
Semantic Visit Aware
Recommendation of Hotels

sdmay23-34

Members: Dylan Hampton, Zachary Garwood, Thomas Frohwein, Joe Zuber, Britney Yu, Kevin
Knack, Nathan Schenck

Client/Advisor: Goce Trajcevski

1

Introduction
● Routing applications (eg. Google Maps) give users the ability to easily find routes

to selected destinations
● Booking applications (eg. Booking.com) give users the ability to find hotels in a

desired location
● Neither of these tools can show a user what hotels can be used as starting points

for routes to destinations which fit desired categories
● We have developed a visual prototype system that does just that:

○ Allows a user to select desired categories (museum, statue, park, etc.)
○ Generates a routes from an origin location (hotel or Airbnb)

2

Implementation Architecture
● Frontend

○ Takes user criteria as input
○ Communicates with backend to run

algorithm(s) based on criteria
○ Interacts with the Mapbox API, shows

results directly on map
● Backend

○ Holds the PoI data
○ Runs the desired algorithms
○ Returns path data to Frontend
○ Returns best starting point for most

diverse path

3

Implementation Architecture (Frontend)
● React with TypeScript
● Redux Store to hold state of

application
● User-defined criteria

○ Mandatory
■ city selection
■ distance constraint
■ metric constraint
■ category constraint(s)

○ Optional
■ algorithm choice
■ max number of hotels UI Design

4

Implementation Architecture (Frontend)

● Recommended Hotels
Dropdown

○ Click on Hotel to have map
display route and PoIs

● Red pins - hotels
● Blue dots - PoIs

UI Design
5

Implementation Architecture (Backend)
● Written in Python (Flask)

● Apache HTTP Server

● Store client’s algorithms to generate routes

● Store PoI Network used by route generation algorithms

● API for communicating with frontend

● When user wants to generate route
○ Invoke the route generation algorithm (selected by the user’s request)
○ Generate the routes that will be stored as a JSON object
○ Send the JSON to the MapBox API to visualize the routes. Backend block diagram

6

Video demonstration

7

https://docs.google.com/file/d/1Z18aT-RpBGjGsCYnFYPGs2JU2-_4bdtz/preview

Project Plan - Frontend
Milestone

KEY

Task
Major Section

Frontend Gantt Chart
8

Work Accomplishments - Frontend
Objective Tasks Milestone

Basic UI Setup ● Figma Design
● Setup Codebase

UI is Setup

Implement Visualization in
MapBox

● Implement Redux for State
Management

● Connect to Backend
● Implement MapBox

Visualization is Successfully
Implemented in MapBox

Route Visualization in
MapBox

● User Input to Change Map Routes are Successfully Visualized
on Website

Project Plan- Backend

Backend Gantt Chart

Milestone

KEY

Task
Major Section

9

Work Accomplishments - Backend
Objective Tasks Milestone

Configuring the VM ● Setup Virtual Machine
● Setup Middleware
● Setup the Web Server

● VM is Successfully Configured

Project Setup ● Setup Git
● Setup Flask
● Implement CI/CD

● Backend of Project is Setup

Incorporating the Client’s
Algorithm

● Implement Route Generation
● Implement City Information

Endpoint
● Fixing any Issues that Arise

● Client’s Algorithm is successfully
Implemented

Recommendation of
Hotels

● Testing
● Recommendation of Hotels
● New City Data

● Successfully Recommends Hotels
● Successfully Recommends POIs
● Added New City

Key Contributions
Joseph Zuber (Backend)

● Added setup code which sped up requests
to backend

● Provided backend extension to implement
Chicago (and possible future cities)

Nathan Schenck (Frontend)

● Added origin marker generation on route
data response

● Created hotels/routes features in sidebar

Dylan Hampton (Frontend)

● Added PoI and route drawing
functionality

● Added zoom functionality when routes
are returned / are selected

Kevin (Backend)

● Fixed New York dataset
● Testing for backend functions

10

Key Contributions (Continued)
Zachary Garwood (Backend)

● Implemented route generation and city
information endpoints

● Created Chicago dataset

Thomas Frohwein (Frontend)

● Implemented Redux to hold state of
application

● Setup asynchronous calls to communicate
with backend

Britney Yu (Backend)

● Restructured the project into separate
packages and modules

● Identified issues with the categories PoIs
through testing

11

Challenges and Solutions
Frontend

● Challenge: Issues with storing state of user input for submission
○ Solution: Implementing Redux to help store state information in slices

Backend

● Challenge: Java Python drivers did not offer the functionality we needed
○ Solution: Migrating our project to Flask

● Challenge: Very slow response times
○ Solution: Calculating graph setup information once for each city after the first time the city is

requested, and making it persistent between requests
● Challenge: Missing PoI dataset

○ Solution: Talked with client to retrieve necessary dataset

12

Future Work
● More cities could be added
● Existing cities could be perfected

○ With more time and resources, PoI categories could be more accurate and more numerous
● Travel time between PoIs in a route could be calculated and shown to the user

○ To fully support this, multiple modes of transportation could be added
● Hotels/Airbnbs and PoIs could be further fleshed out:

○ Ability to view photos or information about the selected PoI
○ Links to view information or book a selected hotel/Airbnb could be provided

● Additional constraints could be added for route generation:
○ Cost of hotels
○ Availability of rooms in hotels
○ Requiring the inclusion of specific PoIs (eg. the Brooklyn Bridge) rather than categories

13

Conclusion
● Successful visualization of our client’s algorithms

● Fulfilled all functional and nonfunctional requirements

● Application can easily be built upon in the future

14

